UNDER THREAT: U.S. Vaccine Programs

The Centers for Disease Control and Prevention (CDC)’s National Center for Immunization and Respiratory Diseases (NCIRD) prevents disease, disability, and death in the U.S. through its immunization programs, such as the Section 317 Immunization Program, which supports the vaccination of children, adolescents, and adults at the local, state, and national levels.

CDC Vaccine Programs: SAVING LIVES AND MONEY
OVER THE NEXT 20 YEARS, VACCINES
WILL SAVE MORE THAN 700,000 LIVES
WILL PREVENT OVER 21 million hospitalizations

Just FOUR vaccine-preventable diseases among adults aged 50 and older costs the U.S.
$26.5 billion each year
- Flu: $16 billion
- Pneumococcal: $5.1 billion
- Shingles: $5 billion
- Pertussis: $397.7 million

WITHOUT VACCINES

42,000 CHILDREN WILL DIE EACH YEAR

The Vaccines for Children program, which provides immunizations to children who are unable to afford them, has saved nearly $259 billion in direct medical costs and $1.38 trillion in total societal costs since 1994.

Sources: U.S. Centers for Disease Control and Prevention and the Adult Vaccine Access Coalition

In July 2017, the House Appropriations Committee passed its FY 2018 Labor, Health, and Human Services funding bill that calls for a $50 million cut to NCIRD’s vaccine programs, including the critical Section 317 Program. Funding for these programs must be restored. A cut of this magnitude would have a drastic impact on NCIRD’s ability to:
- Support the science that informs our national immunization policy;
- Provide a safety net to uninsured, low-income adults by enabling vaccine purchases;
- Perform community outreach; and
- Conduct surveillance, laboratory testing and epidemiology in response to disease outbreaks.

IDSA represents over 11,000 infectious diseases physicians and scientists devoted to patient care, disease prevention, public health, education, and research in the area of infectious diseases. Our members care for patients of all ages with serious infections, including meningitis, pneumonia, tuberculosis, HIV/AIDS, antibiotic-resistant bacterial infections such as those caused by methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), and Gram-negative bacterial infections such as Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa, emerging infections such as Middle East respiratory syndrome coronavirus (MERS-Cov), Enterovirus D68, and Ebola, and bacteria containing novel resistance mechanisms such as the New Delhi metallo-beta-lactamase (NDM) enzymes and others that make them resistant to a broad range of antibacterial drugs, including one of our most powerful classes of antibiotics, the carbapenems (carbapenem-resistant Enterobacteriaceae, or CRE).