Figure s2b. Sample Sensitivity/Specificity by Proportion

Study	TN	FP		Specificity	95%-CI
comp = Saliva without Migueres Landry Azzi Iwasaki Williams McCormick-Baw Hanson Yokota (CT cohort) Yokota (AQ cohort) Random effects model Heterogeneity: /² = 93%, τ	79 89 54 66 49 105 268 114	3 2 33 1 1 6 6 0	-# -# -# -# -# -#	0.98 0.62 0.99 0.98 0.99 0.98 0.95	[0.90; 0.99] [0.92; 1.00] [0.51; 0.72] [0.92; 1.00] [0.89; 1.00] [0.95; 1.00] [0.95; 0.99] [0.89; 0.98] [1.00; 1.00] [0.93; 1.00]
Otto Leung Procop Random effects model Heterogeneity: $I^2 = 80\%$, τ^2	43 33 177	4 5 1		0.87 0.99	[0.80; 0.98] [0.72; 0.96] [0.97; 1.00] [0.83; 0.99]
comp = OPS vs. NPS Pham J Patel Patel Wang X Random effects model Heterogeneity: $I^2 = 0\%$, τ^2	21 121 45 173 = 0, p		—————————————————————————————————————	0.98 1.00 0.97	[0.84; 1.00] [0.93; 0.99] [0.92; 1.00] [0.94; 0.99] [0.96; 0.99]
comp = MTS vs. NPS Pham J Vermeiren McCulloch DJ Tu YP Pere Random effects model Heterogeneity: I ² = 76%, r	21 59 140 452 7	0	p = 1.00	1.00 0.98 1.00 1.00	[0.84; 1.00] [0.94; 1.00] [0.94; 1.00] [0.99; 1.00] [0.59; 1.00] [0.89; 1.00]
comp = ANS vs. NPS Tu YP Hanson Random effects model Heterogeneity: $I^2 = 0\%$, τ^2	447 273 = 0, p	1	3	1.00	[0.99; 1.00] [0.98; 1.00] [0.99; 1.00]
comp = ANS/OPS vs. N LeBlanc (Cobas) Vlek Random effects model Heterogeneity: $I^2 = 47\%$, τ Heterogeneity: $I^2 = 89\%$, τ	155 80 ² = 1.1	2 145,	p < 0.01	0.98	[0.98; 1.00] [0.91; 1.00] [0.92; 1.00]