ABSTRACT. This paper is part of a clinical practice guideline update on the risk assessment, diagnostic imaging, and microbiological evaluation of complicated intra-abdominal infections in adults, children, and pregnant people, developed by the Infectious Diseases Society of America. In this paper, the panel provides recommendations for diagnostic imaging of suspected acute diverticulitis. The panel’s recommendations are based upon evidence derived from systematic
literature reviews and adhere to a standardized methodology for rating the certainty of evidence
and strength of recommendation according to the GRADE (Grading of Recommendations
Assessment, Development and Evaluation) approach.

Key words. intra-abdominal infection; acute diverticulitis; guideline

In adults with suspected acute diverticulitis, should CT, US, or MRI be obtained as the initial imaging modality?

Recommendation: In non-pregnant adults with suspected acute diverticulitis, the panel suggests obtaining an abdominal CT as the initial diagnostic modality (*conditional recommendation, very low certainty of evidence*).

Remarks:

- Intravenous (IV) contrast is usually appropriate whenever a CT is obtained and can be helpful to characterize and detect subtle bowel wall abnormalities and complications of diverticulitis; however, CT without IV contrast may be appropriate [1].

Recommendation: In non-pregnant adults with suspected acute diverticulitis, if CT is unavailable or contraindicated, the panel suggests obtaining an US or MRI as the initial diagnostic modality (*conditional recommendation, very low certainty of evidence*).

In pregnant adults with suspected acute diverticulitis, should CT, US, or MRI be obtained as the initial imaging modality?
Recommendation: In pregnant adults with suspected acute diverticulitis, US or MRI can be considered for imaging; however, the panel is unable to recommend one imaging modality versus the other (knowledge gap).

INTRODUCTION

This paper is part of a clinical practice guideline update on the risk assessment, diagnostic imaging, and microbiological evaluation of complicated intra-abdominal infections in adults, children, and pregnant people, developed by the Infectious Diseases Society of America [2-8]. In this paper, the guideline panel provides recommendations for diagnostic imaging of suspected acute diverticulitis in adults and pregnant adults. Recommendations are stratified by initial imaging and then subsequent imaging if initial imaging is inconclusive. These recommendations replace previous statements in the last iteration of this guideline [9].

A complicated intra-abdominal infection extends beyond the hollow viscus of origin into the peritoneal space and is associated with either abscess formation or peritonitis; this term is not meant to describe the infection’s severity or anatomy. An uncomplicated intra-abdominal infection involves intramural inflammation of the gastrointestinal tract and has a substantial probability of progressing to complicated infection if not adequately treated.

These recommendations are intended for use by healthcare professionals who care for patients with suspected intra-abdominal infections.

METHODS

The panel’s recommendations are based upon evidence derived from systematic literature reviews and adhere to a standardized methodology for rating the certainty of evidence and
strength of recommendation according to the GRADE (Grading of Recommendations Assessment, Development, and Evaluation) approach (Supplementary Figure 1) [10]. The recommendations have been endorsed by the European Society of Clinical Microbiology and Infectious Diseases (ESCMID). Strong recommendations are made when the recommended course of action would apply to most people with few exceptions. Conditional recommendations are made when the suggested course of action would apply to the majority of people with many exceptions and shared decision-making is important.

A comprehensive literature search (through October 2022) was conducted as part of a systematic review. Key eligibility criteria at both the topic and clinical question levels guided the search and selection of studies. The search was limited to include any randomized controlled trials (no publication date limit) or observational studies published in 2010 or thereafter. Due to a lack of studies addressing MRI, the publication date limit was expanded to include studies published in 2005 or thereafter. Studies addressing children were excluded because diverticulitis is rare in children. Studies addressing appendiceal diverticulitis and colonic diverticular bleeding, along with those studying CT colonography, magnetic resonance cholangiopancreatography, unenhanced CT, and point-of-care US (POCUS) were also excluded. Though POCUS is used frequently, only studies assessing ultrasounds performed in a controlled manner and interpreted by a radiologist were included, primarily due to the variability in interpretation of POCUS. Refer to the full list of eligibility criteria in the Supplementary Material.

Sensitivities, specificities, and corresponding 2X2 tables were plotted in RevMan based on the population and imaging study [11]. Included studies underwent critical appraisal according to the GRADE approach, and then an assessment of benefits and harms of care options
informed the recommendation(s) [10,12]. Details of the systematic review and guideline development processes are available in the Supplementary Material.

SUMMARY OF EVIDENCE

A comprehensive search identified 7 observational studies meeting eligibility on whether to use CT, US, or MRI to diagnose diverticulitis [13-19] (Supplementary Table 1).

Three studies addressed the diagnostic accuracy of CT or MRI in the targeted patient population, i.e., patients with suspected diverticulitis [13,15,19]. CT yielded sensitivities of 92-99% and specificities of 97-100% (Supplementary Figure 2), whereas MRI yielded a sensitivity of 94% (95% CI: 82-99) and a specificity of 88% (95% CI: 47-100) (Supplementary Figure 3).

No studies addressing the diagnostic accuracy of US patients with suspected diverticulitis were found; however, four studies addressing the diagnostic accuracy of US or CT in patients with abdominal pain were identified [14,16-18]. No studies addressing the diagnostic accuracy of MRI were found for this broader patient population. As expected, studies that enrolled patients with abdominal pain vs. patients with suspected diverticulitis, specifically, had lower prevalence of diagnosed diverticulitis. Therefore, patients enrolled in these studies have a lower pre-test probability of diverticulitis. In these studies, US yielded sensitivities of 61-100% and specificities of 99-100% (Supplementary Figure 4), whereas CT yielded sensitivities of 81-95% and specificities of 93-99% (Supplementary Figure 5).

The evidence comparing CT vs. MRI is of low certainty due to indirect comparisons, i.e., each study compared only one imaging modality to the clinical reference standard, and due to a small sample size in the study addressing MRI (Supplementary Tables 2 and 3). The evidence comparing CT vs. US is of very low quality due to risk of bias as determined by applying the
QUADAS-2 tool [20,21], indirect comparisons as described above, indirect populations in that these studies included patients with abdominal pain, and wide confidence intervals for the sensitivities of US (Supplementary Tables 2 and 4).

No studies addressing diagnostic accuracy of imaging modalities for pregnant patients with suspected diverticulitis were identified. However, the panel considered evidence from non-pregnant adults, along with the balance between benefits and harms (e.g., radiation exposure) of each imaging modality.

Additional analyses were performed that were considered informative but not essential to formulating the recommendation (Supplementary Figure 6, Supplementary Table 5).

RATIONALE FOR RECOMMENDATIONS

CT is suggested as the initial imaging modality for non-pregnant adults with suspected diverticulitis due to its high diagnostic accuracy for diverticulitis. Additionally, CT can identify complications associated with diverticulitis (e.g., perforation, abscess, pylephlebitis, bowel obstruction, bleeding, fistula) and can be used to rule out other causes of abdominal pain [1,22-24]. Compared to MRI, CT is more readily available, often more feasible, less costly, and may cause less distress for patients with a sensitivity to noise or confined spaces. Compared to US, obtaining a CT as the initial imaging test may decrease the need for additional imaging, resulting in saved time and resources. These benefits outweigh the risks attributed to CT of radiation exposure [25,26] and contrast-associated side effects (e.g., contrast-induced nephropathy).

IMPLEMENTATION CONSIDERATIONS
If CT imaging is not readily available or is contraindicated, US or MRI are reasonable alternatives in terms of diagnostic accuracy. US results may be limited by abdominal tenderness, leading to a more restricted evaluation, and patient obesity. Intravenous (IV) contrast is usually appropriate whenever a CT is obtained and can be helpful to characterize and detect subtle bowel wall abnormalities and complications of diverticulitis; however, CT without IV contrast may be appropriate [1]. At least one study found similar diagnostic performance in low-dose unenhanced CT as compared to contrast-enhanced standard-dose CT in adults with suspected acute diverticulitis [27].

RESEARCH NEEDS

Future research on MRI as the initial diagnostic imaging modality in patients with suspected diverticulitis would be informative. Head-to-head comparisons of different imaging modalities in this patient population are also needed. Additional research on low-dose CT would also be helpful.

Acknowledgments: The expert panel would like to acknowledge the previous panel, under the leadership of Dr. Joseph Solomkin, for their work on the previous iteration of this larger guideline. The panel would like to acknowledge the contributions of Elena Guadagno, medical librarian, for the creation and execution of PICO-specific literature searches; Dr. Nigar Sekercioglu, methodologist, for contributions to the design of the analysis; and Sarah Pahlke, methodologist, for significant contributions to the finalization of the manuscripts and supplementary materials. Rebecca Goldwater and Imani Amponsah provided project coordination. When scoping the diagnostic imaging questions, Drs. Dean Nakamoto and Yngve Falck-Ytter provided clinical guidance. The panel would also like to acknowledge the European Society of Clinical Microbiology and Infectious Diseases and the following selected reviewers for their
review of the draft manuscript: European Society of Clinical Microbiology and Infectious Diseases, and

Drs. Sheldon Brown (infectious diseases), Eric Cober (infectious diseases), Patrick T. Delaplain (pediatric
surgery), and Dean Nakamoto (radiology).

Dr. Robert A. Bonomo is chair of the panel. Drs. Pranita Tamma and Robert Bonomo served as clinical
leads for the questions addressed in this manuscript. Remaining panelists assisted with conception and
design of the analysis, interpretation of data, drafting and revising the recommendations and manuscript,
and final approval of the recommendations and manuscript to be published. Jennifer Loveless and
Katelyn Donnelly, methodologists, were responsible for general project management, designing and
performing the data analyses, and leading the panel according to the GRADE process.

Disclaimer: It is important to recognize that guidelines cannot always account for individual variation
among patients. They are assessments of current scientific and clinical information provided as an
educational service; are not continually updated and may not reflect the most recent evidence (new
evidence may emerge between the time information is drafted and when it is published or read); should
not be considered inclusive of all proper methods of care, or as a statement of the standard of care; do not
mandate any course of medical care; and are not intended to supplant clinician judgment with respect to
particular patients or situations. Whether to follow guidelines and to what extent is voluntary, with the
ultimate determination regarding their application to be made by the clinician in the light of each patient’s
individual circumstances. While IDSA makes every effort to present accurate, complete, and reliable
information, these guidelines are presented “as is” without any warranty, either express or implied. IDSA
(and its officers, directors, members, employees, and agents) assume no responsibility for any loss,
damage, or claim with respect to any liabilities, including direct, special, indirect, or consequential
damages, incurred in connection with these guidelines or reliance on the information presented.

The guidelines represent the proprietary and copyrighted property of IDSA. All rights reserved. No part
of these guidelines may be reproduced, distributed, or transmitted in any form or by any means, including
photocopying, recording, or other electronic or mechanical methods, without the prior written permission
of IDSA. Permission is granted to physicians and health care providers solely to copy and use the
guidelines in their professional practices and clinical decision making. No license or permission is granted
to any person or entity, and prior written authorization by IDSA is required to sell, distribute, or modify
the guidelines, or to make derivative works of or incorporate the guidelines into any product, including,
but not limited to, clinical decision support software or any other software product. Except for the
permission granted above, any person or entity desiring to use the guidelines in any way must contact
IDSA for approval in accordance with the terms and conditions of third-party use, in particular any use of
the guidelines in any software product.

Financial support: This work was supported by the Infectious Diseases Society of America.

Possible conflicts of interest: Evaluation of relationships as potential conflicts of interest is determined
by a review process. The assessment of disclosed relationships for possible COIs is based on the relative
weight of the financial relationship (i.e., monetary amount) and the relevance of the relationship (i.e., the
degree to which an association might reasonably be interpreted by an independent observer as related to
the topic or recommendation of consideration). A.C. receives honoraria from UpToDate, Inc. J.R.B.
serves as Past President of the European Society of Clinical Microbiology and Infectious Diseases.
M.S.E. receives royalties from UpToDate, Inc. as Co-Section Editor of Pediatric Infectious Diseases.
M.H. serves on the Society Healthcare Epidemiology of America (SHEA) Board of Directors. All other
authors reported no relevant disclosures.

Additional information: More detailed information on the analysis and development of recommendations
is available in the Supplementary Material.

REFERENCES
 Appropriateness Criteria® left lower quadrant pain. Available at:

