SHEA/IDSA Guidelines for Developing an Institutional Program to Enhance Antimicrobial Stewardship (Archived)
Published CID,
Timothy H. Dellit, Robert C. Owens, John E. McGowan, Dale N. Gerding, Robert A. Weinstein, John P. Burke, W. Charles Huskins, David L. Paterson, Neil O. Fishman, Christopher F. Carpenter, P. J. Brennan, Marianne Billeter, Thomas M. Hooton
Executive Summary
This document presents guidelines for developing institutional programs to enhance antimicrobial stewardship, an activity that includes appropriate selection, dosing, route, and duration of antimicrobial therapy. The multifaceted nature of antimicrobial stewardship has led to collaborative review and support of these recommendations by the following organizations: American Academy of Pediatrics, American Society of Health-System Pharmacists, Infectious Diseases Society for Obstetrics and Gynecology, Pediatric Infectious Diseases Society, Society for Hospital Medicine, and Society of Infectious Diseases Pharmacists. The primary goal of antimicrobial stewardship is to optimize clinical outcomes while minimizing unintended consequences of antimicrobial use, including toxicity, the selection of pathogenic organisms (such as Clostridium difficile), and the emergence of resistance. Thus, the appropriate use of antimicrobials is an essential part of patient safety and deserves careful oversight and guidance. Given the association between antimicrobial use and the selection of resistant pathogens, the frequency of inappropriate antimicrobial use is often used as a surrogate marker for the avoidable impact on antimicrobial resistance. The combination of effective antimicrobial stewardship with a comprehensive infection control program has been shown to limit the emergence and transmission of antimicrobial-resistant bacteria. A secondary goal of antimicrobial stewardship is to reduce health care costs without adversely impacting quality of care.
These guidelines focus on the development of effective hospital-based stewardship programs and do not include specific outpatient recommendations. Although judicious use of antimicrobials is important in outpatient clinics and long-term care facilities, there are very few data regarding effective interventions, and it is unclear which interventions are most responsible for improvement in these settings.
The population targeted by these guidelines includes all patients in acute care hospitals. Most of the evidence supporting the recommendations in these guidelines is derived from studies of interventions to improve antimicrobial use for hospitalized adults. Many of these studies have focused on adults in intensive care units. Only a handful of studies have focused on hospitalized newborns, children, and adolescents. Few studies have included substantial populations of severely immunocompromised patients, such as patients undergoing hematopoetic stem cell transplantation or receiving chemotherapy likely to cause prolonged neutropenia. Nonetheless, the recommendations in these guidelines are likely to be broadly applicable to all hospitalized patients.
The ratings of the practices recommended in this document reflect the likely impact of stewardship practices on improving antimicrobial use and, consequently, minimizing the emergence and spread of antimicrobial resistance. Each recommendation is rated on the basis of the strength of the recommendation and the quality of evidence supporting it, using the rating system of the Infectious Disease Society of America (IDSA), as shown in table 1 [1]. The ratings provided also reflect the likely ability of the recommendation to reduce health care costs. Some strategies to reduce resistance may actually result in an increase in drug acquisition costs as part of a more comprehensive plan to reduce overall costs, including the attributable costs of resistance. In situations in which the likely impact of a recommendation on appropriate use of antimicrobials and health care costs diverge or in which cost data are not available, separate ratings are given.
Effective antimicrobial stewardship programs can be financially self-supporting and improve patient care [2–7] (A-II). Comprehensive programs have consistently demonstrated a decrease in antimicrobial use (22%–36%), with annual savings of $200,000–$900,000 in both larger academic hospitals [2, 3, 5, 7, 8] and smaller community hospitals [4, 6]. Thus, health care facilities are encouraged to implement antimicrobial stewardship programs. A comprehensive evidence-based stewardship program to combat antimicrobial resistance includes elements chosen from among the following recommendations based on local antimicrobial use and resistance problems and on available resources that may differ, depending on the size of the institution or clinical setting.
- Core members of a multidisciplinary antimicrobial stewardship team include an infectious diseases physician and a clinical pharmacist with infectious diseases training (A-II) who should be compensated for their time (A-III), with the inclusion of a clinical microbiologist, an information system specialist, an infection control professional, and hospital epidemiologist being optimal (A-III). Because antimicrobial stewardship, an important component of patient safety, is considered to be a medical staff function, the program is usually directed by an infectious diseases physician or codirected by an infectious diseases physician and a clinical pharmacist with infectious diseases training (A-III).
- Collaboration between the antimicrobial stewardship team and the hospital infection control and pharmacy and therapeutics committees or their equivalents is essential (A-III).
- The support and collaboration of hospital administration, medical staff leadership, and local providers in the development and maintenance of antimicrobial stewardship programs is essential (A-III). It is desirable that antimicrobial stewardship programs function under the auspices of quality assurance and patient safety (A-III).
- The infectious diseases physician and the head of pharmacy, as appropriate, should negotiate with hospital administration to obtain adequate authority, compensation, and expected outcomes for the program (A-III).
- Hospital administrative support for the necessary infrastructure to measure antimicrobial use and to track use on an ongoing basis is essential (A-III).
- There are 2 core strategies, both proactive, that provide the foundation for an antimicrobial stewardship program. These strategies are not mutually exclusive.
- Health care information technology in the form of electronic medical records (A-III), computer physician order entry (B-II), and clinical decision support (B-II) can improve antimicrobial decisions through the incorporation of data on patient-specific microbiology cultures and susceptibilities, hepatic and renal function, drug-drug interactions, allergies, and cost. However, implementation of these features has been slow, and conformation of the technology to the clinical environment remains a challenge.
- Computer-based surveillance can facilitate good stewardship by more efficient targeting of antimicrobial interventions, tracking of antimicrobial resistance patterns, and identification of nosocomial infections and adverse drug events (B-II).
- The clinical microbiology laboratory plays a critical role in antimicrobial stewardship by providing patient-specific culture and susceptibility data to optimize individual antimicrobial management and by assisting infection control efforts in the surveillance of resistant organisms and in the molecular epidemiologic investigation of outbreaks (A-III).
- Both process measures (did the intervention result in the desired change in antimicrobial use?) and outcome measures (did the process implemented reduce or prevent resistance or other unintended consequences of antimicrobial use?) are useful in determining the impact of antimicrobial stewardship on antimicrobial use and resistance patterns (B-III).
A. Prospective audit with intervention and feedback. Prospective audit of antimicrobial use with direct interaction and feedback to the prescriber, performed by either an infectious diseases physician or a clinical pharmacist with infectious diseases training, can result in reduced inappropriate use of antimicrobials (A-I).
B. Formulary restriction and preauthorization. Formulary restriction and preauthorization requirements can lead to immediate and significant reductions in antimicrobial use and cost (A-II) and may be beneficial as part of a multifaceted response to a nosocomial outbreak of infection (B-II). The use of preauthorization requirements as a means of controlling antimicrobial resistance is less clear, because a long-term beneficial impact on resistance has not been established, and in some circumstances, use may simply shift to an alternative agent with resulting increased resistance (B-II). In institutions that use preauthorization to limit the use of selected antimicrobials, monitoring overall trends in antimicrobial use is necessary to assess and respond to such shifts in use (B-III).
The following elements may be considered and prioritized as supplements to the core active antimicrobial stewardship strategies based on local practice patterns and resources.
- Education. Education is considered to be an essential element of any program designed to influence prescribing behavior and can provide a foundation of knowledge that will enhance and increase the acceptance of stewardship strategies (A-III). However, education alone, without incorporation of active intervention, is only marginally effective in changing antimicrobial prescribing practices and has not demonstrated a sustained impact (B-II).
- Guidelines and clinical pathways. Multidisciplinary development of evidence-based practice guidelines incorporating local microbiology and resistance patterns can improve antimicrobial utilization (A-I). Guideline implementation can be facilitated through provider education and feedback on antimicrobial use and patient outcomes (A-III).
- Antimicrobial cycling. There are insufficient data to recommend the routine use of antimicrobial cycling as a means of preventing or reducing antimicrobial resistance over a prolonged period of time (C-II). Substituting one antimicrobial for another may transiently decrease selection pressure and reduce resistance to the restricted agent. Unless the resistance determinant has been eliminated from the bacterial population, however, reintroduction of the original antimicrobial is again likely to select for the expression of the resistance determinant in the exposed bacterial population.
- Antimicrobial order forms. Antimicrobial order forms can be an effective component of antimicrobial stewardship (B-II) and can facilitate implementation of practice guidelines.
- Combination therapy. There are insufficient data to recommend the routine use of combination therapy to prevent the emergence of resistance (C-II). Combination therapy does have a role in certain clinical contexts, including use for empirical therapy for critically ill patients at risk of infection with multidrug-resistant pathogens, to increase the breadth of coverage and the likelihood of adequate initial therapy (A-II).
- Streamlining or de-escalation of therapy. Streamlining or de-escalation of empirical antimicrobial therapy on the basis of culture results and elimination of redundant combination therapy can more effectively target the causative pathogen, resulting in decreased antimicrobial exposure and substantial cost savings (A-II).
- Dose optimization. Optimization of antimicrobial dosing based on individual patient characteristics, causative organism, site of infection, and pharmacokinetic and pharmacodynamic characteristics of the drug is an important part of antimicrobial stewardship (A-II).
- Parenteral to oral conversion. A systematic plan for parenteral to oral conversion of antimicrobials with excellent bioavailability, when the patient's condition allows, can decrease the length of hospital stay and health care costs (A-I). Development of clinical criteria and guidelines allowing switch to use of oral agents can facilitate implementation at the institutional level (A-III).
For the full list of references, please visit Oxford Academic, Clinical Infectious Diseases online.